
Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 1 of 11

Safety Critical and High Reliability Software: A Case Study in Real-Time Design
Dr Tony Hedge, Benthic Sciences LLP (tony@benthicsciences.co.uk)

Abstract

This paper examines some typical design problems from the perspective of maritime
systems. Maritime systems are commonly required to integrate data from a dozen or
more "sensors", each quite complex in their own right. Serial data links (RS-422 or RS-
485) are still by far the most common interconnection techniques. Careful consideration
must be given to synchronisation issues, and we look at some of the appropriate real-
time design techniques for ensuring integrity is maintained, and at the role that
appropriate tools can fulfil.

Foreword

The introductory notes for this event describe its aims as “exploring the approaches
used to develop embedded software in some of these different safety-critical
applications, with a view to establishing any common approaches and identifying
opportunities for sharing best practice and development tools and techniques.” This
paper does not set out to break new ground, but rather strives to put into a real-life
context some very old and well-established problems, with old and well-established
solutions, and to ask some questions: As an industry, do we handle such problems very
well? What are the best current techniques for addressing these problems? Am I really
the only one who cares?

Background

Benthic Sciences LLP provides support to a range of clients to support the design,
development and testing of software in real-time embedded systems. Our precise role
will vary from project to project; in one, we may be delivering a design against which
other individuals or teams will go on to code, to develop test specifications and to test.
In another, we may be in the test role, testing someone else’s design and code. This
separation of roles, implicit in a good safety-related development methodology,
demands that each team must be able to communicate effectively; as a development
partner we are in a good position to see how well, or otherwise, this demand is met!

For illustration we will use a rather ‘generic’ V-shaped development process model, as
shown below1.



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 2 of 11

Figure 1

The general idea behind such a process is that the left (or should that be downhill
slide?) side of the V represents the translation from specification to code, whereas the
uphill struggle on the right represents testing, from individual modules at the bottom, to
functional testing of the complete system at the top. At each ‘level’, we are in theory
testing on the right what we developed on the left. I’m not promoting it as ideal, but it is
commonly understood, or at least commonly claimed as such. This isn’t my diagram,
and I might label it somewhat differently, but the original author clearly has both real
experience and a sense of humour - whatever path you take through the dashed lines
takes you back inexorably to the bottom!

Ideally we ought to be able to test what we develop on the left before we reach the
corresponding level on the right along the ‘blue’ timeline. We ought to be able to test our
requirements specification for consistency and completeness before we try coding it.
We ought to be able to test our design (eg via a simulation) before we get to test its
implementation in real code on real hardware.

I work mostly on the left hand-side of the ‘V’, so that is the area on which I will
concentrate.

On of our principal areas of activity is the maritime sector. Embedded systems in this
sector are characterised by a high number of asynchronous serial channels, connecting
sensors such as GPS, radar, speed logs, gyros, inertial navigator systems,
meteorological sensors, echo sounders etc. In the defence sub-sector, we can add to
this list: periscopes, sonars, electro-optic sensors, telemetry links and more. RS-422,
and occasionally RS-485, are the dominant interconnection standards in both the



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 3 of 11

commercial and military sub-sectors, with Ethernet, CAN-bus and MIL-STD-1553
encountered, but still relatively infrequently.

Let us take a typical defence scenario as an illustration, because it clearly highlights the
consequences of some common design errors. I will use a fictitious but realistic
example for what I hope are obvious reasons.

A Typical (but Fictional) Problem

In a typical defence scenario, most of the embedded systems of the type we are
discussing cooperate with the purpose of building some form of tactical ‘picture’:

 Where is the vessel?
 Where (and what) are the friendly, hostile and neutral entities within its vicinity?
 Where will everything be in ‘n’ minutes time?

Decisions may be taken on the basis of that tactical ‘picture’ – decisions that in a real
combat scenario may lead to engaging one or more of those entities with one or more
weapon systems.

Consider a fictional but representative system. A number of sensors are providing data
for a number of ‘tracked’ entities. Data may be typically the bearing and possibly range
of a few contacts from a sonar, updated once every few tens of seconds, and several
tens of tracks each with range, bearing, course, speed and identity from a radar, the
whole data set updated every few seconds. Data is typically transmitted as a single
message per ‘track’.

The role of this fictional system is to assess and grade the threat of each track, and
transmit the current 10 highest threats to a threat display system.

At the Requirements Analysis stage, the text books suggest these might be represented
in a UML use-case diagram something like this:



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 4 of 11

Figure 2

We need to apply some appropriate method to develop the design. We may, depending
upon the design method, identify the “significant domain objects” along the way, as
something like:

Figure 3

uc Threat Monitor Use Case Diagram

(from Use Cases)

Add Radar data

Radar

(from Actors)

(from Use Cases)

Add Passiv e Sonar
data

(from Use Cases)

Add Ranging Sonar
Data

Passiv e Sonar

(from Actors)

Ranging Sonar

(from Actors)

Threat Display
System

(from Actors)

TIMER

(from Actors)

(from Use Cases)

Age data

(from Use Cases)

Originate Threat
message

(from Use Cases)

Monitor Threat

GPS

(from Actors)

(from Use Cases)

Update OS state

*

*

object Key Domain Objects

Activ eSonarHandler

ThreatTable

ThreatMsgHandler

TrackTable

Passiv eSonarHandler

Ageing

RadarHandler

ThreatMonitor

OS State



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 5 of 11

Again, depending upon the design method, we may arrive at some form of Collaboration
or Communication Diagram, or more likely, several. This one, for example, shows the
collaborations involved in processing a radar track.

Figure 4

A Method for Deriving the Design?

But how do we do it? How do we, as designers, get from Figure 2 to Figure 4? How do
we know it is any good? How do the V&V team on the right know it is any good? What
are the techniques we use? What are the techniques we should be using?

In the Design phase we will need to go a few stages beyond our Communication
Diagrams of the style of Figure 4. We will identify messages between objects, methods
or functions, and some of the internal structures. Typically we may by this stage have a
few dozen diagrams to represent the Design.

Having completed the Design phase, there are tools that can help us test and improve
it: analysis tools, executable models within MDD toolsets etc.

Once we are into the Coding phase, we are well supported by modelling tools, coding
standards, compilers, static testing tools, software metric tools, automatic
documentation generators etc , and beyond that there are dynamic testing tools to take
us through into the Testing phase. I’m not suggesting it is easy, but there are plenty of
tools to support us.

But what is there to support us actually within the Design phase? How do we go about
it it? How do we make this leap from Specification to Coding, that we call Design?

sd Radar Data Communication Diagram

RadarHandler

(from Key Domain Objects)
Radar

(from Actors)

RadarFIFO TrackTable

(from Key Domain Objects)

ThreatMonitor

(from Key Domain Objects)

Ageing

(from Key Domain Objects)

ThreatMsgHandler

(from Key Domain Objects)

Threat Display System

(from Actors)

ThreatMsgFIFOThreatTable

(from Key Domain Objects)

OS State

(from Key Domain Objects)



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 6 of 11

From my own experience, we (that is ‘we’ as an industry, excluding ‘us’ as a company
of course!) generally do it pretty badly. But this isn’t just a rhetorical question that I’m
about to answer for you – it is a genuine question to all delegates and speakers at this
conference – this is what the “Knowledge Transfer” bit of EKTN is about!

What I can answer is how we (as a company) do it, and look at some of the benefits and
some of the pitfalls. But first – why does it matter? As long as we can get to something
on paper which will give our Coding team something to work with, why does it matter
how we do it? Surely there’s lots of stuff out there to do it with? Isn’t that what UML is
for?

To answer the last one first – no! UML is an excellent (in my opinion, your opinions may
vary!) tool for assisting with and representing design. It lets us draw all sorts of useful
diagrams to analyse and express our design; it doesn’t tell us how to do it. It doesn’t
provide us with what I would call “a method of deriving the design”.

Back to “why does it matter?” It matters because in a real-time system, this is the stage
at which we can and should resolve synchronisation issues. Data that originates
together has to stay together, be used together, and anything derived from it also needs
to stay together. That is a requirement that is best met by good design rather than by
clever coding. This may be blindingly obvious to all of us in this room – I hope it is. But if
it is so obvious, why is it one of the commonest errors we find in such systems? Not
only is it one of the commonest, it is one of the hardest to find. The system may pass a
particular test a hundred or a thousand times, before throwing up a single error. Code
reviews, static analysis and dynamic testing around the “bottom of the V” will not reveal
such problems. Because they are introduced “high on the left of the V”, they will turn up,
at best, high on the right. Sometimes so high on the right, it’s turned from a ‘V’ into a
hockey-stick.

Furthermore, these errors pose a safety risk in many systems, in both commercial and
defence sectors. In the exaple system, consider the implications of combining a
longitude from one update from the GPS with a latitude from the subsequent update; or
an identity flag (from a friendly ‘track’) from one update with the range and bearing (of a
hostile track) from the previous update.

These errors happen in real systems. But why? We’ve had the programming tools we
need to resolve synchronisation issues since 1968 when Dijkstra gave us the
semaphore2. We’ve added to the toolset steadily ever since, with mutexes, mailboxes,
queues, interlocked operations, reader-writer locks etc. But they are difficult to use, and
prone to errors, if we leave it until the Coding phase. We need to address
synchronisation earlier, so that it is “embedded” in the design.



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 7 of 11

An Old Solution to an Old Problem?

Wouldn’t it be useful to have some sort of approach which specifically addressed
synchronisation issues, and gave us:

a. a means of design representation;
b. a method of deriving the design;
c. a way of constructing the software so that it is consistent with the design;
d. a means of executing the constructed software so that the design structure

remained visible at run time;
e. facilities for testing the software in terms of the design structure?

Note that we aren’t talking about Coding here, just Design. Ideally the above approach
would be language independent, and portable between execution environments.

That isn’t my list – for a start I’ve never really even understood what (d) even means! It
comes from the Introduction to “The Official Handbook of Mascot”3. Mascot (Modular
Approach to Software Construction and Test) began life at the Royal Signals Research
Establishment in the early 70’s and was probably the dominant methodology for real-
time design in the UK defence sector from the mid-70’s through to the late 80’s.

Looking at it in 2009, it has a number of shortcomings:

 a graphical notation unsupported by any current design tools;
 a textual notation that is horribly Pascal-like (apologies to Pascal enthusiasts!);
 it uses only a tiny subset of synchronisation primitives;
 people stare at you as if you have a propeller on your head when you mention it.

But what it retains, and is still relevant today, is “the method of deriving the design”
which delivers a design which is, from experience, rigorous and robust in terms of
synchronisation issues. It’s a method that a designer can follow; he or she can refer to it
without having to invent it and describe it. The V&V team can look at the design and
compare it to the design rules to check compliance.

To condense several hundred pages into a few bullet points, the essence of the “Mascot
method” can be summarised as:

 The design is broken down into Activities and Independent Data Areas (IDA’s).
 Activity = Thread or Process
 Synchronisation mechanisms should not be embodied in Activities but in

communications elements (Intercommunication Data Areas or IDA)
 Mascot Activities NEVER communicate with each other directly but always

through the intermediary of an IDA.
 An IDA is a passive element; it is never scheduled.



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 8 of 11

 The independent threads of execution of Activities pass through the IDA coding.
 Several such threads may simultaneously be active, or temporarily suspended,

within an IDA.
 Synchronisation should take place ONLY in the access procedures of IDAs.
 Synchronisation primitives are limited to JOIN, LEAVE, STIM, WAIT, WAITFOR.

Looking at our Collaboration Diagram again, but this time showing the objects as
Mascot Activities and IDA’s via a UML prototype, and adding a bit more detail, we get:

Figure 5

Other Mascot enthusiasts (yes, there are some4) will spot that I’m using some Mascot 2
terminology here, rather than pure Mascot 3! I still find the concept of Pools and
Channels extremely useful.

The required Synchronisation primitives are, as previously noted, a tiny subset of what
most modern execution environments can offer. Whilst that can (and rightly should) be
seen as a limitation, it also makes the Mascot “Design Method” portable to almost any
execution environment. Table 1 (at the end of this paper) illustrates how the Mascot
primitives translate to three environments in which I have implemented Mascot designs.

By retaining the essential “method of deriving the design” from Mascot, but using more
modern tools to represent that design (UML), we have a proven and robust means of
translating Specification into Design that firmly embeds good design principles. It works
well with C, C++, and Ada (and I’ve heard of it being applied to Java5). It adapts
extremely well to Object Oriented Design, but is by no means limited to it. It has a
proven pedigree in the defence domain. I suspect the essential “method of deriving the
design” has passed into many companies’ own internal Design Guidelines purely

sd Radar Data Communication Diagram

«MASCOT Activity»
RadarHandler

(from Key Domain Objects)
Radar

(from Actors)

«MASCOT Channel»
RadarFIFO

«MASCOT Pool IDA»
TrackTable

(from Key Domain Objects)

«MASCOT Activity»
ThreatMonitor

(from Key Domain Objects)

«MASCOT Activity»
Ageing

(from Key Domain Objects)

«MASCOT Activity»
ThreatMsgHandler

(from Key Domain Objects)
Threat Display

System
(from Actors)

«MASCOT Channel»
ThreatMsgFIFO

«MASCOT Pool IDA»
ThreatTable

(from Key Domain Objects)

«MASCOT Pool IDA»
OS State

(from Key Domain Objects)

Sequence 1: Use Case "Add Radar data"

Sequence 2: Use case "Age data"

Sequence 3: UseCase "Monitor Threat"

Sequence 4: Use case "Originate Threat Message"

1: PutChar() 1.1: ReadMsg()

1.2: MsgAvail()

1.3: WriteTrack()

2: AgeTrack()

3: GetTrack()

3.1: GetOSState()

3.2: UpdateThreat()

4: GetThreat() 4.1: WriteMsg() 4.2: FetchChar()



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 9 of 11

because of the familiarity with it of many of us “mature” designers. Maybe you already
use the Mascot “method” without knowing its name or origin.

The Shortcomings

There are, inevitably, shortcomings in this approach. It is much too “hand-draulic”; it
relies far too much on manual checking - we do not have any tools with which to test the
compliance of the design against the Mascot rules (static testing); we do not have (or I
haven’t yet found) a good way to communicate the use of synchronisation techniques
via UML to the Coding team; it demands that we teach the approach to the Coding
team; and lastly, but by no means least, we are relying on an approach that fell into
disuse, at least as a published “standard” some twenty years ago.

We also need to consider the future. Twenty years ago Mascot was being taught in
universities, at least at MSc level. What are we teaching about real-time design
methods now? I’m not actually interested whether or not the next graduate with whom I
work knows how to design yet another Internet Bookstore Ordering System!

More Modern Alternatives?

If I knew of a better approach, I would not only adopt it, I would shout about it from the
roof-tops! I have looked, but I haven’t yet found anything that instils the same level of
synchronisation ‘discipline’ into the design.

UML is becoming so established as the de facto modelling language that I would hope
to retain it as the means of communicating the Design from one phase to the next. So
the Object Modelling Group (OMG), which maintains UML, would seem a natural
source, but so far I have found only one candidate technology: MARTE (Modeling and
Analysis of Real-time and Embedded systems)6. MARTE is relatively new (2007?), but
seems to be attracting the interest of most of the UML tool vendors and of some
significant players in the safety-critical arena (eg Alcatel, Lockheed Martin and Thales)
To quote from OMG (sorry about the spelling!):

“The new standard provided by the Object Management Group, called the MARTE
profile, addresses a broader scope than its predecessor (the SPT one). MARTE tackles
all the activities of the two classical branches of the V cycle, i.e. modeling and validation
& verification. Modeling capabilities have to ensure both hardware and software aspects
of RTES in order to improve communication/exchange between developers. It has also
to foster the construction of models that may be used to make quantitative analysis
regarding hardware and software characteristics. “

I’m still trying to assess the strengths of MARTE. It certainly seems to promise the right
capabilities for representing synchronisation in the design. It also seems to promise
capabilities for analysing the design. I can’t yet say that I have found anything



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 10 of 11

corresponding to what I would call a design method, but that may well be because I’m
still struggling to understand the documentation!

I’ve looked at the major commercial UML tool suites, but haven’t found anything with the
design rigour we are seeking, at least not anything applicable to real-time embedded
development. They support design and analysis, and some even simulation, but don’t
seem to offer a “method of deriving the design”.

I can firmly recommend a book by Bruce Powel Douglass of I-Logix (“Doing Hard
Time”7). It is an excellent source of advice, but I would argue that that he discusses
strategies and techniques for design, rather than anything approaching a method in my
terms.

I would stress here that my failure to find what I think we need does not imply it doesn’t
exist. Maybe I haven’t looked hard enough yet; I get paid to design – looking for better
design tools isn’t usually chargeable to the client!

Conclusions

I believe there is a shortcoming in the way we, as an industry, treat the Design phase of
real-time embedded systems. These shortcomings can introduce errors which are
difficult to detect, expensive to resolve, and are frequently discovered only late in the
Testing phase, if then. If unresolved they can pose a significant safety hazard.

The design methods we need to resolve these shortcomings are well-established, but
do not seem to be well supported by current tools and technologies. Or perhaps they
are well supported, but I haven’t found them yet!

By presenting what I see as these shortcomings, I hope to stimulate discussion about
appropriate solutions. What do you use as “the method of deriving the design”? What
are its benefits and shortcomings? Does it integrate well with the rest of your
development lifecycle, especially Validation and Verification? I certainly have a lot of
questions. Do you have the answers?



Embedded Software Design for Safety Critical Systems – Electronics KTN, 3rd November 2009
Tony Hedge, Benthic Sciences LLP, Page 11 of 11

Table 1 – Mascot Synchronisation Primitives in Real-Time Environments

MASCOT MultiTask
(US Software Inc, c. 1990)

µc/OS-II
(Micrium Inc, 1999)

Windows CE 5.0
(Microsoft, 2004)

JOIN getres
mutex

OsSemPend
semaphore

EnterCriticalSection
critical section

LEAVE relres
mutex

OSSemPost
semaphore

LeaveCriticalSection
critical section

CHECK chkres
mutex

OsSemQuery
semaphore

n/a

STIM setevt
event

OsSemPost
semaphore

SetEvent
event

WAIT wteset
event

OsSemPend
sempaphore

WaitForSingleObject
event

WAITFOR wteset with timeout
event

OsSemPend with timeout
semaphore

WaitForSingleObject with
timeout
event

TIMENOW n/a OSTimeGet
ticks

GetTickCount
milliseconds

DELAY n/a OSTimeDly
ticks

Sleep
milliseconds

References

1 Wikipedia, author “M ajth” – public domain.
2 “Co-operating sequential processes”, Dijkstra, E.W. in “Programming Languages”, (ed.) Genuys, F.,
Academic Press, London,1968.
3 “Official Handbook of Mascot”, Joint IECCA and MUF Committee on Mascot, 1987.
4 http://www.mascot-devel.org/index.html, by Richard Taylor.
5 MASCOT2002, http://www.object-forge.com.
6 MARTE, http://www.omgmarte.org.
7 “Doing Hard Time”, Bruce Powel Douglass, Addison-Wesley, Reading, Mass.,1999

For more information on MASCOT try http://async.org.uk/Hugo.Simpson/


